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Introduction

Engagement	in	learning	environment
(student	engagement)

Behavioral
enthusiasm	for	participating

Emotional
affective	states

Cognitive
investment

• Engagement prediction in the Wild (EW), a sub challenges
in the 7th Emotion Recognition in the Wild 2019 Grand
Challenge (EmotiW), predicts the engagement intensity
of a subject in a video which recorder while the subject is
watching and educational video (MOOC) [1].

• Kaur et al. [2] described EW dataset with some examples
of frames of the video as the above figure, top to bottom
rows show engagement intensity level: [0 (low) - 3 (high)].
• Our method achieved the best result, a mean square error

of 0.0597, with three fundamental steps:
1 Feature Extraction.
2 Predict the engagement intensity for each type of
feature with two different models.

3 Fusion the results of each type.
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Architecture

Each video goes through OpenFace [3] to extract face region,
facial landmark and gaze direction. We divide the video se-
quence v into ` segments s1, s2, ..., s` with |si∪si+1| = 0.5 and
|si| = |si+1|, i = 1, `− 1.
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Feature	extraction

We explore two feature sets: F1 - eye gaze and head pose
features, F2 - facial features from SE-ResNet [4]. Each feature
set is classified by two networks A1, A2.
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Experiment & Results

EW dataset in EmotiW 2019 contains 4 engagement levels:
disengaged (DE, 0), barely engaged (BE, 1), engaged (E,2)
and highly engaged (HE, 3) with a highly unbalanced.
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We empirically selected `1 = 15 and `2 = 21 which are the
number of segments for F1 and F2, respectively. Dimensions,
the output shape of FC, LSTM layers in A1, A2 are summa-
rized in the table below.

Input Model Network Dimension
F1 M3 A1 `1 × [128, 128, 128, 128, 1]
F1 M4 A2 `1 × [100, 128, 128, 48, 128, 1]
F2 M1 A1 `2 × [64, 128, 64, 128, 1]
F2 M2 A2 `2 × [64, 64, 128, 48, 64, 1]

Our ensemble models based on two techniques: Support Vec-
tor Regression (SVR) with RBF kernel and the following
equation

Vfused =
m∑
k=1

αkVk, w.r.t
m∑
k=1

αk = 1 (1)

where Vk denotes the output of model k. The following figure
describe the progress of our fusion to achieve final model.
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Experiment & Results

Subs TestMSE

DE BE E HE Overall
Yang et. al. [5] - - - - 0.0626
Niu et. al. [6] - - - - 0.0724

Thomas et. al. [7] - - - - 0.0792
Chang et. al. [8] - - - - 0.0813

Ensemble 1 0.3342 0.0834 0.0133 0.0660 0.0787
Ensemble 2 0.3289 0.1087 0.0270 0.0353 0.0911
Ensemble 3 0.2686 0.0644 0.0231 0.0640 0.0696
Ensemble 4 0.2204 0.0405 0.0320 0.1022 0.0628
Ensemble 5 0.2461 0.0297 0.0224 0.1378 0.0597
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